
Project Name: Homework Tracker // Group 6

1. Overview
Homework Tracker is a software solution that helps students manage homework across the
courses that they are taking. It aims to reduce the time and stress that comes from homework
management and to simplify the process of tracking homework. HomeworkTracker presents
class and assignment information in an easy to use graphical way. Additonally, homework
tracker keeps track of when assignments are due and notifies the user, via the Windows 10
notification tray, when an assignment’s deadline is within the current week.

2. Source Code
See Canvas for submission file: homework-tracker.zip

3. Test Plan

3.1 Levels of Testing
● Unit Tests:

○ (1) Assignment Constructor
■ Tests the Assignment class’s constructor method to see if it properly

creates Assignments, based on the passed arguments.
○ (2) GradeWeightCategory Total Points Method

■ Tests if a GradeWeightCategory’s TotalPoints property returns the actual
total amount of points the GradeWeightCategory has.

○ (3) Notification Constructor
■ Tests the Notification class’s constructor method to see if it properly

creates Notifications, based on the passed arguments.
● Integration Tests:

○ (4) Integrate the classes: Course, NotificationGenerator, and NotificationQueue
■ Tests if the notification generator creates and adds notifications to the

queue by getting the due dates of assignments in a list of courses.
○ (5) Integrate the classes: GradeWeightCategory, and Assignment

■ Tests if the Assignments in a GradeWeightCategory have accurate grade
percentages when the weight changes and multiple Assignments are
added.

3.2 Test Report
Note: All tests were performed using Visual Studio’s built in testing framework.

● Assignment Constructor
○ Sequence number:

■ 1
○ Condition to be Tested:

■ The value of the Name, Points, and DueDate properties of an Assignment
after construction.

○ Test Case:
■ Test Data:

● DateTime testDate = DateTime.Now;
● Assignment assignment = new Assignment(“Test”, 100, testDate);

■ Expected Result:
● assignment.Name == “Test” && assignment.Points == 100 &&

assignment.DueDate == testDate is true
■ Successful:

● Yes

● GradeWeightCategory Total Points Property
○ Sequence number:

■ 2
○ Condition to be Tested:

■ The value of the TotalPoints property in the GradeWeightCategory class
○ Test Case 1:

■ Test Data:
● A test GradeWeightCategory with no Assignments.

■ Expected Result:
● testCategory.TotalPoints == 0 is true

■ Successful:
● Yes

○ Test Case 2:
■ Test Data:

● A test GradeWeightCategory with three Assignments. The total
points across all the assignments is 60.

■ Expected Result:
● testCourse.TotalPoints == 60 is true

■ Successful:
● Yes

● Notification Constructor
○ Sequence number:

■ 3
○ Condition to be Tested:

■ The value of the Title and Message properties of a Notification after
construction.

○ Test Case 1:
■ Test Data:

● Notification notification = new Notification()
■ Expected Result:

● notification.Title == “No Title” && notification.Message == “No
Content” is true

■ Successful:
● Yes

○ Test Case 2:
■ Test Data:

● Notification notification = new Notification(“Test Title”, “Test
Message”)

■ Expected Result:
● notification.Title == “Test Title” && notification.Message == “Test

Message” is true
■ Successful:

● Yes

● Integrate the classes: Course, NotificationGenerator, and NotificationQueue
○ Sequence number:

■ 4
○ Condition to be Tested:

■ The test condition is the value of the NumNotifications property in our test
NotificationQueue. NumNotifications is the number of notifications added
to the queue by the NotificationGenerator when it is given a list of
courses.

○ Test Case:
■ Test Data:

● A list of 2 Courses, each with GradeWeightCategories that have
Assignments in them. Two of the Assignments have a due date
that is within a week. Two Assignments have a due date that is a
month or more away. One Assignment has a due date that has
already passed.

■ Expected Result:
● Since two assignments are due within the current week, we would

expect two notifications to be added to the queue. Therefore,
notificationQueue.NumNotifications == 2 should be true.

■ Successful:
● Yes

● Integrate the classes: GradeWeightCategory, and Assignment
○ Sequence number:

■ 5
○ Condition to be Tested:

■ The test condition is the value of the GradePercentage property in our
test Assignment. GradePecatage is the percentage of the total grade an
Assignment is worth, and it is dependent on the GradeWeightCategory
the Assignment is in.

○ Test Case 1:
■ Test Data:

● A GradeWeightCategory with 100 points, a weight changed from
70 to 50, and our test assignment as a member. The test
assignment has zero points.

■ Expected Result:
● testAssignment.GetGradePercentage() == 0 is true

■ Successful:
● Yes

○ Test Case 2:
■ Test Data:

● A GradeWeightCategory with 325 points, a weight changed from
70 to 50, and our test assignment as a member. The test
assignment has 25 points.

■ Expected Result:
● testAssignment.GetGradePercentage() == (25 / 325) * 50 is true

■ Successful:
● Yes

○ Test Case 3:
■ Test Data:

● A GradeWeightCategory with 25points, a weight changed from 70
to 50, and our test Assignment as a member. The test Assignment
has 25 points.

■ Expected Result:
● testAssignment.GetGradePercentage() == 50 is true

■ Successful:
● Yes

4. Updates/Modifications
● Description of Changes:

Due to how GUI design works in Windows Forms, we had to merge HomeworkDisplayer
and GuiManager into one HomeworkTrackerGui class. Additionally, we still had some
class members that pertained to functionality that we are not supporting in the prototype,
so we removed those members. We also added a CSVFile class that we forgot to
include in our SDD, but ended up needing. Finally, we added and modified some
members and functions in our backend classes to better support the functionality we are
providing in our prototype. For example, NotificationGenerator is now associated with
Course instead of Assignment, because the NotificationGenerator needs to get
information from all of a Course’s Assignments to properly create all of the necessary
Notifications. Another example is that CSVLink now only needs to persist Course to
support the prototype’s functionality. Our changes only impact our class diagram, all
other diagrams are unaffected.

● Updated Class Diagram (constructors, properties, Windows Forms constructs, and other
C# constructs are omitted for clarity):

5. User’s Guide
See Canvas for submission file: User Guide.pdf

6. Glossary
● Acronym definitions:

○ GUI: Graphical User Interface
○ CSV: Comma Separated Values
○ SDD: Software Design Document

