
 Project Name: Homework Tracker // Group 6 

1. Overview 
Homework Tracker is a software solution that helps students manage homework across the 
courses that they are taking. It aims to reduce the time and stress that comes from homework 
management and to simplify the process of prioritizing homework. Specifically, homework 
tracker keeps track of when assignments are due and notifies the user, via the Windows 10 
notification tray, when an assignment’s deadline is within 24 hours. In addition to notifications, 
homework tracker estimates how long it will take the user to complete an assignment based on 
previous completion times and helps the user figure out which assignment to focus on by 
allowing the user to sort assignments based on various prioritization parameters. 
 

2. Stakeholders 
● The Development Team: 

○ Role: 
■ The development team is responsible for building the project and making 

sure that it satisfies all requirements. 
○ Concerns: 

■ This application will be very UI/UX​1​ intensive, and the team has very little 
experience in designing UI/UX​1​. 

■ The time given to build the application is very limited, which may lead to 
an underwhelming application. 

● The Customer: 
○ Role: 

■ The customer is the reason that this solution is being developed and will 
be responsible for evaluating the work produced by the development 
team. 

○ Concerns: 
■ At the end of the development process, the customer will expect a high 

quality application that helps users with homework management. 
■ The customer will be wary of the risks highlighted in our SRS. For 

example, the customer will be very concerned with whether or not 
Homework Tracker is easy to use. 

■ Customer would be concerned about our team finishing the requirements 
outlined in our SRS. 

● The Users: 
○ Role: 

■ The users are the people who Homework Tracker is being created for and 
will be the primary people who interact Homework Tracker. 



○ Concerns: 
■ The users will expect Homework Tracker to help them effectively manage 

their homework. 
■ The users will want an easy to use UI/UX​1​. 
■ The users will want a reliable application so that do not lose their data. 
■ The users will want a secure application so that their data is safe. 

 

3. System Architecture 
● Diagram: 

 
● Description: 

○ Our application will use a three-tiered architecture. We use a GUI​2​ to interact with 
the user. When the user makes choices that require database information, like 
viewing assignments and changing settings, our GUI​2​ will request that 
information from our application backend. Our application backend will then 
communicate with the database using SQL​3​, and the database will return the 
requested information. After this, the application backend wraps the requested 
data in an object and sends it to the GUI​2​ to be displayed. 

 
 



4. Detailed Design 

4.1.1 Logical Viewpoint: Classes and their Relationships 
 

● Course 
○ Description: 

■ Models a class the user is taking. A Course has a name, total point 
amount, a credit hour amount, and a list of GradeWeightCategories. A 
Course contains data pertaining to a class the user is taking. 

○ Relationship to other classes: 
■ A Course is composed of many GradeWeightCategories 
■ Course uses GradeMath 
■ Courses are persisted by DatabaseLink 
■ Courses are created by HomeworkInputer 
■ Courses are displayed by HomeworkDisplayer 

 
● GradeWeightCategory 

○ Description: 
■ Models a grade weight category in a course. A GradeWeightCategory has 

a name, a list of Assignments, and a weight, which is a floating point 
number that multiplies the points of the Assignments in this 
GradeWeightCategory. A GradeWeightCategory contains assignments 
that are worth a certain percentage of the overall Course grade. 

○ Relationship to other classes: 
■ GradeWeightCategories are owned by a Course 
■ A GradeWeightCategory is composed of many Assignments 
■ GradeWeightCategory uses GradeMath 
■ GradeWeightCategories are persisted by DatabaseLink 
■ GradeWeightCategories are created by HomeworkInputer 
■ GradeWeightCategories are displayed by HomeworkDisplayer 

 
 
 
 
 
 
 
 
 
 



● Assignment 
○ Description: 

■ Models an assignment in a grade weight category. An assignment has a 
name, a due date, a point amount, a start time, and an end time. An 
Assignment contains data that pertains to homework that the user needs 
to complete. 

○ Relationship to other classes: 
■ Assignments are owned by a GradeWeightCategory 
■ Assignment uses GradeMath 
■ Assignments are persisted by DatabaseLink 
■ Assignments are created by HomeworkInputer 
■ Assignments are displayed by HomeworkDisplayer 

 
● HomeworkInputer 

○ Description: 
■ A class that gets homework data from the user. A HomeworkInputer is 

responsible for getting and validating user input via the GUI​2 ​and creating 
the appropriate object from the input. 

○ Relationship to other classes: 
■ HomeworkInputer creates Courses 
■ HomeworkInputer creates GradeWeightCategories 
■ HomeworkInputer creates Assignments 
■ HomeworkInputer is used by GUIManager 

 
● Notification 

○ Description: 
■ A class models the notifications that will be sent to the user, via the 

Windows 10 notification tray. A Notification has a message which is a 
string, and a sound to be played. A notification can be displayed, 
snoozed, or deleted. 

○ Relationship to other classes: 
■ Notifications are created by NotificationGenerator 
■ Notifications are owned by NotificationQueue 
■ Notifications are persisted by DatabaseLink 

 
● NotificationGenerator 

○ Description: 
■ A class that creates notifications. A NotificationGenerator creates a new 

Notification when an Assignment indicates that it’s deadline is close. 
○ Relationship to other classes: 

■ NotificationGenerator receives messages from Assignments 
■ NotificationGenerator creates Notifications 
■ NotificationGenerator adds Notifications to the NotificationQueue 



 
● NotificationStatus 

○ Description: 
■ An enumeration that tracks the user’s current notification preference. 

Notification has three possible values: Enabled, Muted, and Disabled. 
○ Relationship to other classes: 

■ NotificationStatus is owned by NotificationQueue 
■ NotificationStatus is persisted by DatabaseLink 

 
● NotificationQueue 

○ Description: 
■ A class that holds notifications and sends them to the user. A 

NotificationQueue has a NotificationStatus, a list of Notifications, and a 
notification frequency which is a floating point number that controls how 
often notifications are sent. 

○ Relationship to other classes: 
■ A NotificationQueue is composed of many Notifications 
■ NotificationQueue owns NotficationStatus 
■ NotificationQueue is persisted by DatabaseLink 

 
● PrioritizationParameter 

○ Description: 
■ An enum that tracks the user’s current prioritization preference. The 

notification status will be an enum with three possible values: Deadline, 
ExpectedCompletionTime, and GradePercentage. 

○ Relationship to other classes: 
■ PrioritizationParameter is owned by GUIManager 
■ PrioritizationParameter is persisted by DatabaseLink 

 
● HomeworkDisplayer 

○ Description: 
■ A class that displays homework related objects to the GUI​2​. A 

HomeworkDisplayer is displays Courses, GradeWeightCategories, and 
Assignments to the GUI​2​. 

○ Relationship to other classes: 
■ HomeworkDisplayer displays Courses 
■ HomeworkDisplayer displays GradeWeightCategories 
■ HomeworkDisplayer displays Assignments 
■ HomeworkDisplayer is used by GUIManager 

 
 
 
 



● GUIManager 
○ Description: 

■ A class that controls the GUI​2​. GUIManager controls the appearance of 
the GUI​2​ and displays all objects that need to be displayed in the GUI​2​. 

○ Relationship to other classes: 
■ GUIManager uses HomeworkDisplayer 
■ GUIManager uses HomeworkInputer 
■ GUIManager is persisted by DatabaseLink 

 
● DatabaseLink 

○ Description: 
■ A class that persits the application’s data in the database. A 

DatabaseLink is responsible for updating the database and reading from 
the database. 

○ Relationship to other classes: 
■ DatabaseLink persists Course 
■ DatabaseLink persists GradeWeightCategory 
■ DatabaseLink persists Assignment 
■ DatabaseLink persists Notification 
■ DatabaseLink persists NotificationStatus 
■ DatabaseLink persists NotificationQueue 
■ DatabaseLink persists PrioritizationParameter 
■ DatabaseLink persists GUIManager 

● GradeMath 
○ Description: 

■ A collection of static methods for doing calculations pertaining to grades. 
GradeMath will be responsible for calculating: weighted grades, grade 
percentages, total class points, and estimated completion times. 

○ Relationship to other classes: 
■ Course uses GradeMath 
■ GradeWeightCategory uses GradeMath 
■ Assignment uses GradeMath 

 



4.1.2 Logical Viewpoint: Class Diagram 

 
 

   



4.2.1 Interaction Viewpoint: Main Functionalities 
● Login Interaction:  

○ Description: When users open the application, they will be automatically logged 
into their account. There is no need for a username and password because there 
is only one account and data does not need to be private. 

○ Relationships:  
■ Required by classes 

● Edit Class Interaction: 
○ Description: In order to receive notifications for class assignments, users will 

need to add and edit classes.  
○ Relationships: 

■ Dependent on login  
■ Used by weight categories 
■ Used by notifications 
■ Used by database 

● Edit Weight Category Interaction: 
○ Description: Assignments are stored in a weight category there they will need to 

be modified, added and removed by the user. 
○ Relationships:  

■ Dependent on classes 
■ Dependent on weight category 

● Add Class Interaction: 
○ Description: Users will add classes into weight categories and assign a point 

value 
○ Relationships: 

■ Used by notifications 
● Send Notifications Interaction: 

○ Description: The system must send notifications to user. The frequency of such 
notifications is calculated using the weight category and the assignment point 
value to get an overall assignment value. The higher the assignment value, the 
more frequently notifications are sent. 

○ Relationships:  
■ Uses assignments 
■ Uses weight categories 
■ Uses classes 

 
 
 
 
 
 



● Modify Database Interaction 
○ Description: All changes to the data must be made to a database. This 

interaction is responsible for making sure each change to the program state gets 
saved so it can be loaded next runtime of the app. All classes, weights, and 
assignments are saved in the database along with their corresponding values. 
The most recently sent notifications for each assignment are also saved in the 
database to keep track of when the next one should be sent. 

○ Relationships: 
■ Dependent on login 
■ Uses classes 
■ Uses weights 
■ Uses assignments 
■ Uses notifications 

● GUI​2​ Updating 
○ Description: Every time a modification is made, the GUI​2​ needs to be updated. 

First, the data modified data is saved to the database and a refresh signal that 
contains a list of classes to update is sent to the GUIManager. That data is 
loaded from the database and the GUI​2​ is updated. 

○ Relationships: 
■ Uses database 



4.2.2 Interaction Viewpoint 

 

 

 

 

 



4.3 State Dynamic Viewpoint 

 
 



 
● Description 

○ The state diagram shows the different states of each class and how it responds 
to various events. For example, adding an assignment. When the user opens the 
software, it will begin in an idle state, waiting for the user to add an assignment. 
Once added, the software will be in a state of confirming, waiting for user 
confirmation. If the information is correct, it will update. If not, the software will let 
you make changes, then will correct the data. Once corrected, it will update. After 
everything is done, it will go back to idle. 

 

4.4 SRS Diagram Updates: 
● Updated AD​4​: 

 



 
● Description: 

○ Our old AD​4​ only showed the process of adding a new assignment. Now that we 
have a better overview of our applications behavior, we have updated our activity 
diagram to show the general use of our application. The user first acts on 
notifications if they have them, and then view their assignments. Then the user 
can add/edit their homework if they need to, and the system will update the 
database and the GUI​2​. Then the user returns to viewing their assignments. At 
any point in this process the user may close the application and be done using it. 

5. Human Interface Design 
 



 

 

 

 

 

 

 

  

 

 

6. Updates to SRS 
N/A 

7. Glossary/References 
● Acronym Definitions: 

○ UI/UX​1​: User Interface and user Experience 
○ GUI​2​: Graphical User Interface 
○ SQL​3​: Standard Query Language 
○ AD​4​: Activity Diagram 
○ CSV​5​: Comma Separated Values 
○ API​6​: Application Programming Interface 

● References: 
 N/A 



8. Prototype Design 

8.1 Prototype Architecture 
● Diagram: 

 
● Description: 

○ Our prototype will use a three-tiered architecture. We use a GUI​2​ to interact with 
the user. When the user makes choices that require CSV​5​ file information, like 
viewing assignments and changing settings, our GUI​2​ will request that 
information from our application backend. Our application backend will then 
communicate with the CSV​5​ file using a CSV​5​ API​6​, to get the requested 
information. After this, the application backend wraps the requested data in an 
object and sends it to the GUI​2​ to be displayed. 

 
 
 
 
 
 
 
 
 



8.2.1.1 Prototype Logical Viewpoint: Classes and their Relationships 
 

● Course 
○ Description: 

■ Models a class the user is taking. A Course has a name, total point 
amount, a credit hour amount, and a list of GradeWeightCategories. A 
Course contains data pertaining to a class the user is taking. 

○ Relationship to other classes: 
■ A Course is composed of many GradeWeightCategories 
■ Course uses GradeMath 
■ Courses are persisted by CsvLink 
■ Courses are created by HomeworkInputer 
■ Courses are displayed by HomeworkDisplayer 

 
● GradeWeightCategory 

○ Description: 
■ Models a grade weight category in a course. A GradeWeightCategory has 

a name, a list of Assignments, and a weight, which is a floating point 
number that multiplies the points of the Assignments in this 
GradeWeightCategory. A GradeWeightCategory contains assignments 
that are worth a certain percentage of the overall Course grade. 

○ Relationship to other classes: 
■ GradeWeightCategories are owned by a Course 
■ A GradeWeightCategory is composed of many Assignments 
■ GradeWeightCategory uses GradeMath 
■ GradeWeightCategories are persisted by CsvLink 
■ GradeWeightCategories are created by HomeworkInputer 
■ GradeWeightCategories are displayed by HomeworkDisplayer 

 
● Assignment 

○ Description: 
■ Models an assignment in a grade weight category. An assignment has a 

name, a due date, a point amount, ​a start time, and an end time​. An 
Assignment contains data that pertains to homework that the user needs 
to complete. 

○ Relationship to other classes: 
■ Assignments are owned by a GradeWeightCategory 
■ Assignment uses GradeMath 
■ Assignments are persisted by CsvLink 
■ Assignments are created by HomeworkInputer 
■ Assignments are displayed by HomeworkDisplayer 



 
● HomeworkInputer 

○ Description: 
■ A class that gets homework data from the user. A HomeworkInputer is 

responsible for getting and validating user input via the GUI​2​ and creating 
the appropriate object from the input. 

○ Relationship to other classes: 
■ HomeworkInputer creates Courses 
■ HomeworkInputer creates GradeWeightCategories 
■ HomeworkInputer creates Assignments 
■ HomeworkInputer is used by GUIManager 

 
● Notification 

○ Description: 
■ A class models the notifications that will be sent to the user, via the 

Windows 10 notification tray. A Notification has a message which is a 
string​, and a sound to be played​. A notification can be displayed, 
snoozed,​ or dismissed (which is handled through the Windows 10 
notification tray). 

○ Relationship to other classes: 
■ Notifications are created by NotificationGenerator 
■ Notifications are owned by NotificationQueue 
■ Notifications are persisted by CsvLink 

 
● NotificationGenerator 

○ Description: 
■ A class that creates notifications. A NotificationGenerator creates a new 

Notification when an Assignment indicates that it’s deadline is within 24 
hours. 

○ Relationship to other classes: 
■ NotificationGenerator receives messages from Assignments 
■ NotificationGenerator creates Notifications 
■ NotificationGenerator adds Notifications to the NotificationQueue 

 
● NotificationStatus 

○ Description: 
■ An enumeration that tracks the user’s current notification preference. 

Notification has three possible values: Enabled, ​Muted​, and Disabled. 
○ Relationship to other classes: 

■ NotificationStatus is owned by NotificationQueue 
■ NotificationStatus is persisted by CsvLink 

 
 



● NotificationQueue 
○ Description: 

■ A class that holds notifications and sends them to the user. A 
NotificationQueue has a NotificationStatus, a list of Notifications, ​and a 
notification frequency which is a floating point number that controls how 
often notifications are sent​. 

○ Relationship to other classes: 
■ A NotificationQueue is composed of many Notifications 
■ NotificationQueue owns NotficationStatus 
■ NotificationQueue is persisted by CsvLink 

 
● PrioritizationParameter 

○ Description: 
■ An enum that tracks the user’s current prioritization preference. The 

notification status will be an enum with three possible values: Deadline, 
ExpectedCompletionTime, and GradePercentage. 

○ Relationship to other classes: 
■ PrioritizationParameter is owned by GUIManager 
■ PrioritizationParameter is persisted by CsvLink 

 
● HomeworkDisplayer 

○ Description: 
■ A class that displays homework related objects to the GUI​2​. A 

HomeworkDisplayer is displays Courses, GradeWeightCategories, and 
Assignments to the GUI​2​. 

○ Relationship to other classes: 
■ HomeworkDisplayer displays Courses 
■ HomeworkDisplayer displays GradeWeightCategories 
■ HomeworkDisplayer displays Assignments 
■ HomeworkDisplayer is used by GUIManager 

 
● GUIManager 

○ Description: 
■ A class that controls the GUI​2​. GUIManager ​controls the appearance of 

the GUI​2​ and​ displays all objects that need to be displayed in the GUI​2​. 
○ Relationship to other classes: 

■ GUIManager uses HomeworkDisplayer 
■ GUIManager uses HomeworkInputer 
■ GUIManager is persisted by CsvLink 

 
 
 
 



● CsvLink 
○ Description: 

■ A class that persits the application’s data in the CSV​5​ file. A CsvLink is 
responsible for updating the CSV​5​ file and reading from the CSV​5​ file. 

○ Relationship to other classes: 
■ CsvLink persists Course 
■ CsvLink persists GradeWeightCategory 
■ CsvLink persists Assignment 
■ CsvLink persists Notification 
■ CsvLink persists NotificationStatus 
■ CsvLink persists NotificationQueue 
■ CsvLink persists PrioritizationParameter 
■ CsvLink persists GUIManager 

● GradeMath 
○ Description: 

■ A collection of static methods for doing calculations pertaining to grades. 
GradeMath will be responsible for calculating: weighted grades, grade 
percentages, total class points, ​and estimated completion times​. 

○ Relationship to other classes: 
■ Course uses GradeMath 
■ GradeWeightCategory uses GradeMath 
■ Assignment uses GradeMath 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



8.2.1.2 Prototype Logical Viewpoint: Classes Diagram 
 

 
 
 
 
 
 
 
 
 
 
 



 
8.2.2 Prototype Interaction Viewpoint 
 
 
 



8.2.3 Prototype State Dynamic Viewpoint 

 

 

● There was no change to the assignment state diagram for the prototype. 

 
 
 
 
 



8.2.4 Prototype SRS Diagram Updates 
No change for prototype, see section 4.4. 

 


