

The Honeypot

Mauricio Aquino & Nathan Sanders
University of Colorado Colorado Springs

Throughout this report we will discuss the design
of the project, tools/techniques we studied,
implementation, testing, lessons learnt, and future
work. A honeypot is a very unique and easy way
to gather valuable information about attackers
and methods of intrusion without allowing
vulnerabilities in your system.

1. Introduction

“The art of war teaches us to rely not on the likelihood
of the enemy’s not coming, but on our own readiness to
receive him; not on the chance of his not attacking, but
rather on the fact that we have made our position
unassailable” (M. Valentine). This quote speaks to this
project as well as the entire cyber security field. Attacks
can come from anywhere at any time and it is our job to
be ready for whatever is sent our way. For this project,
we wanted to test the boundaries of the idea that you
can't stop a determined attacker. While you can prepare
and develop reaction plans, a determined hacker will
always find a way.

Similarly, Chris Sanders writes in his book ​Intrusion
detection honeypots: detection through deception​,
“No matter how deliberate your efforts, an attacker
who is relentlessly motivated or resourced will
eventually gain access to a device on your network.
Therefore, you should deploy detection mechanisms
to aid in investigating and responding to attacks as
quickly as possible” (Sanders, 4). We can’t create a
perfect system, we can get close, but we will almost
always leave something vulnerable. For this project,
we wanted to create something that allows us to
implement deception and get the upper hand on the
attacker.

As Jack Dempsey famously said, “The best defense is
a good offense.” (W.Safire) Similarly, the best way to
learn about the attacker is by learning their methods.
To test this idea of offensive security we created a
honeypot. Honeypots are a computer security
resource that provide system administrators the
ability to detect network intrusions and learn about
the tactics bad cyber actors use to exploit
vulnerabilities. Sanders defines Honeypots as “a
security resource whose value lies in being probed,
attacked, or compromised” (Sanders, 21). Our goal
was to create an intentionally vulnerable system.
Attackers gain access to the system and while they
think they have successfully bypassed our security
measures, they actually fell into our honeypot.

2. Challenges

The two main challenges with honeypot technology
are the overhead and the risks that they present for
system administrators. Fortunately, these two factors
are able to be mitigated and controlled through
honeypot interactivity. Honeypot interactivity can be
defined as how much the system allows the user to
interact with the system through the use of
commands, services, etc. Currently, there are a
variety of honeypot technologies that offer a wide
range of interactivity, but with that comes increased
levels of risk and overhead. The upside to the vast
variation of options available in this field is that there
is a honeypot solution for virtually any business or
organization.

3. Related work and their shortcomings

Currently as it stands, honeypots are a growing and
innovative technology. This means that presently
there aren't many other technologies that exist that
are similar to honeypots. However, as previously
mentioned there are a wide variety of types of
honeypots and available software. There are three
main categories of honeypots that all honeypots fall
into: systems, services, and tokens. (Sanders, 22)
Honey systems mirror operating systems, honey
services mirror a service, and honey tokens mirror
some type of data or document. Presently there are a
wide variety of free and open source honeypot
softwares available to use on the internet. “As of this

The Honeypot | 1
Aquino & Sanders

writing, I count over 80 different free honeypot tools
focused across a broad spectrum of systems and
services.” (Sanders, 20) Some popular examples are
Cowrie, Conpot, Dionaea, RDPy, Open Canary,
Glastopf, and HoneyPress. (Sanders, 20)

It is our role as future system administrators to
defend networks. Knowing how to detect network
intrusions and learn about common cyber attacks are
important lessons to learn for our career. Honeypots
are a new solution to the old problem of cyber
security. With time honeypots will gain much more
attention for the innovative and unique design.​ ​From
our experience as computer security majors, we have
learned the value of protecting data and staying ahead
of our attackers. Through coursework, real world
examples, and designing, implementing, and testing
our own systems, we have learned and acquired new
skills for how to best protect systems and keep
information safe.

5. Design

The first element that we will guide you through for
our project is the high level design considerations we
made before starting our project. To test the honeypot
and truly understand what value it can add to a
security system, we created our own honeypot and
experimented with its capabilities.

We implemented a ssh honeypot using the software
called Cowrie. Cowrie allows individuals to connect
and interact with a fake computer system through the
use of the ssh protocol. The advantage here is that
you are able to detect intrusions and get information
about the attacker through their interactions with the
honeypot. We chose this honeypot software because
of our familiarity with the ssh protocol and because it
gave this project the right amount of interactivity and
complexity we were looking for. For our honeypot,
we decided to emulate an Ubuntu 18 server system as
it is familiar to our team and simple to use. The
system we placed our Honeypot on is a Raspberry PI
3+ due to its versatility and its affordability.

There were multiple design considerations that we
wanted to make sure would be fulfilled during the
planning of this project. The first is that we wanted to

make the system secure so that there would be little
risk for an attacker to turn the honeypot against us.
The second design consideration we made is we
wanted the honeypot to appear believable so that we
do not scare off attackers and can get as much
information from them as possible. While the
honeypot is indeed a completely fake system, it
mirrors a real system in appearance and functionality
to convince the attackers that they have successfully
penetrated a real system.

6. Tools/techniques studied

For this project, we studied the see, think, do
methodology covered in Chris Sander’s book. He
mentions you want the attacker to see systems,
services or data that are actually honeypots, you want
them to think honeypots are valuable, and you want
the attacker to do something that causes an
interaction with the honeypot. (Sander, 42) We also
studied different ways to make ssh connections
secure in order to maintain a secure system. Our goal
was to be able to remotely connect to the system
without adding any unnecessary risk and without
leaving the system vulnerable. The rest of our
preparation revolved around finding ways to make
the system appear real and be interactive to the
attacker.

7. Implementation

The first step towards implementation was installing
virtual machine software onto a windows machine.
This was a key component to our project because of
our goal to make the system appear real. The best
way to make our honeypot seem real was by
emulating a real system. The reason we chose to use
VMs to do this is because it would give us the ability
to create a system quickly from the ground up
without needing additional hardware outside of the
honeypot system. The VM allows us to control
information as well as create a more safe testing
environment than our personal computers. We also
used multipass and Hyper-v on linux and windows
respectively to create Ubuntu 18 server systems
which we could emulate.

The Honeypot | 2
Aquino & Sanders

The second step for implementation was installing
linux on a clean system for our honeypot to run on.
We used a Raspberry PI for our honeypot system and
burned a clean install of the Ubuntu Server 20 LTS
OS on an SD card. During this step, we also updated
the system and created the necessary user accounts
for this project.

The third step of our implementation was creating a
private/public rsa key pair we could use to connect
remotely to our Raspberry PI system. We decided to
do this because it would make our remote connection
much safer than using a traditional password when
connecting through ssh. Then we added the public
key to our authorized key file on the new admin
account we set up for the Raspberry PI server. Next
we set up the config files on both the client and
server side machines to make connections easier and
more secure. Some of the important changes made in
the server config are disabling password
authentication, disabling tcp forwarding, and
changing the default port for ssh. These all help make
using ssh much more secure and less of a security
risk.

The fourth step we made was continuing to make our
remote connections to the Raspberry PI secure by
enabling and configuring the firewall. To do this we
used the default built-in firewall software on Ubuntu
called ufw. Using this software allowed us to
configure what ports to keep open and on what ips
that to allow traffic in from on those ports. Most
importantly, it blocked all other ports so that
unwanted connections cannot be made or abused.

The next major step we made was installing the
honeypot software and all of the required
dependencies for that software. We utilized the
official documentation to complete the installation.
One of the main issues we ran into is the
documentation is a bit outdated. We had to do some
research into how to install the required python
libraries since python has changed in updates over
time.

The next implementation step our team took is we
further configured our two virtual environments and
started to harvest basic information off these

machines in order to emulate an Ubuntu 18 server
system. We used the ssh -V command to capture the
correct output that a user would expect from an
Ubuntu system. We alo used ssh -Q cipher and ssh -Q
mac to get the list of supported ciphers and macs on a
Ubuntu system. Then we used a script to gather the
running processes on the system so that we could
reference these in a honeypot when a user interacts
with it. We also used the rsync command to copy the
file system of an Ubuntu VM into the honeypot and
created a PIckle file that the honeypot could use to
emulate that system. Our next task we accomplished
is the creation of a custom script that displays an
MOTD with fake information and looks like one
found in a traditional Ubuntu system. We had to
configure the windows hyper-v VM to allow ssh
connections to it from outside the host computer in
order to utilize the rsync command which was quite a
challenge.

The final step in the implementation process was to
modify the config file to utilize the data we captured
from our Ubuntu VM systems. Here we added the ssh
version, the ciphers and macs, the path to the file
system PIckle file, and the custom MOTD. Currently
we left the server to allow any user to log in with root
except for a few restrictions, we also created some
basic accounts which could be used that the attacker
could use to login with.

8. Testing

Once we had completely set up and configured our
honeypot to emulate our target system, we were
ready to begin testing. We started our testing by
running the honeypot software and opening the port
in the firewall to allow the ssh connection to the
honeypot. To start the honeypot, we used the
command bin/cowrie start. During implementation,
we decided to keep our honeypot on the port 2222 as
we felt it would make the server seem natural and
approachable since that is a common ssh port. The
command we used to allow this connection was sudo
ufw allow 2222/tcp.

Now that we had set up our honeypot for testing, we
used the nmap command to scan the Raspberry PI
server and determine what ports are available. Using

The Honeypot | 3
Aquino & Sanders

this command revealed the open port 2222 and the
version of ssh. From this point, we decided the next
logical step as a pseudo attacker would be to attempt
connecting to the system. We connected to the open
port 2222 and attempted to log into the root account
of the server. In the implementation, configured root
login as default to accept almost any passwords. This
makes it easier for the attacker to get to make the
honeypot more useful for the defender. We used the
credentials username: root and password: banana and
the system allowed us in. Our next goal was to
explore the file system and see if we could navigate
around the system to see what files we could find.
After that, we were disconnected from the server.

Our next goal in testing was to view the log and see
what information the honeypot was able to capture
from our little escapade. The server recorded the
connection, credentials used to log in, commands we
used, ciphers and macs, etc. Upon further
investigation we found a few pieces of information
we found interesting. The first was that the system
recorded the version of ssh that we had used to
connect. The honeypot also reached a predefined
timeout and forcefully closed the connection with the
attacker. We found this interesting and something
worth exploring later.

9. Performance Evaluation and Feature
Comparison

This honeypot offers interaction with connecting
through the ssh protocol, authentication, a fake file
system, and many other configurable options to make
the system appear real to the attacker. As for the
honeypot performance, it did a great job presenting a
system that appeared to be real through the use of the
honeypot's complex and functional interaction. What
was enjoyable about this honeypot software is that it
does not stop at ssh connection. Cowrie allows the
attacker to log into a fake system and interact with it.
The added benefit of this feature is that we can learn
more about the tactics the attacker uses and what
information they may be after. Specifically, it was
enjoyable to see that the software allowed us to log in
as root and explore a file system. The file system
made the honeypot feel like a real system and made it
interesting to interact with.

10. Lesson Learned

The main lesson we learned for our project is how we
can take the offensive side in cyber security. This
gave us tools we can use to defend computer
networks by being able to detect network intrusions
and create the possibility to respond/recover from
cyber attack by providing a way to learn about our
attackers. It is great to learn how we can detect
network intrusions because it gives us the ability to
know if our network has been compromised. We also
can gain valuable information from honeypots
without losing our system. In most cases, security
systems are attacked, and cyber security professionals
are able to learn from their mistakes and correct the
vulnerabilities so it doesn’t happen again, but the
honeypot presents a different process. Instead we can
learn about our vulnerabilities before the damage is
done. Honeypots can give us valuable attacker
information about an attacker and how they are
getting into the system, without actually granting
them access to the system.

11. Future Work

Future work for this project that we would like to
pursue is to continue to configure and secure our
honeypot to make it less likely to be vulnerable from
attacks and also to make it more interactive and
believable for the attacker. We also would like to
research and implement a capture the flag type game
where attackers can look for specific important files
and try to gain access to that information within the
honeypot. Similarly, we would like to further
research some of the other honeypots and experiment
with their capabilities like we did in this project. It
would be very fun to compare different honeypots
based on strengths and weaknesses to see what the
best honeypot is for different situations and systems.

12. Suggestions

Our suggestion for anyone who is considering
implementing this is to find a honeypot software that
meets the needs in terms of interactivity and feature
set provided by the honeypot. Similarly, we suggest
testing your honeypot and experimenting with the
different functions it grants.

The Honeypot | 4
Aquino & Sanders

13. Conclusion

Throughout this project, we explored the concept of
computer security from a different perspective. The
cyber security field is built around protection and
defending but for this project we chose to investigate
an offensive security method and bite back at the
attacker. We found honeypots to be unique and
innovative and wanted to implement our own.
Through design work, multiple step implementation,
and thorough testing we were able to see the
capabilities of a honeypot and experience first hand
how effective they can be.

Honeypots are an unique and exciting way for
students to test and learn new computer security
skills. While in their simplest form, honeypots can be
a great tool to explore cyber security, honeypots can
be a very effective tool for real world network
defense. The information honeypots provide is
valuable, and removes most of the risk involved
trying to obtain that information.

By implementing honeypots, not only can we detect
network intrusions, but we can learn about our
enemies and respond to attacks before significant
damage is done. We can defend an attack before it
even happens with the information a honeypot
provides. Attackers won't even know that they are in
a fake system. With honeypots. we use the attacker's
knowledge to our benefit and capture them in our
gooey, sticky honeypot.

14. References

C. Sanders, ​Intrusion detection honeypots: detection
through deception​. Chris Sanders, 2020.

M. Valentine, “5 Life-Altering Lessons from The Art
of War by Sun Tzu,” Goalcast, 19-Sep-2019.
[Online]. Available:
https://www.goalcast.com/2018/06/08/5-lessons-from
-sun-tzus-art-of-war/. [Accessed: 09-Dec-2020].

W. Safire, “The Best Defense,” The New York
Times, 14-Apr-2003. [Online]. Available:
https://www.nytimes.com/2003/04/14/oPInion/the-be

st-defense.html#:~:text=''The best defense is a,''.
[Accessed: 04-Dec-2020].

The Honeypot | 5
Aquino & Sanders

15. Appendix

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

The Honeypot | 6
Aquino & Sanders

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

The Honeypot | 7
Aquino & Sanders

